Biomedical applications of diamond-like carbon coatings: a review.
نویسندگان
چکیده
Owing to its superior tribological and mechanical properties with corrosion resistance, biocompatibility, and hemocompatibility, diamond-like carbon (DLC) has emerged as a promising material for biomedical applications. DLC films with various atomic bond structures and compositions are finding places in orthopedic, cardiovascular, and dental applications. Cells grew on to DLC coating without any cytotoxity and inflammation. DLC coatings in orthopedic applications reduced wear, corrosion, and debris formation. DLC coating also reduced thrombogenicity by minimizing the platelet adhesion and activation. However, some contradictory results (Airoldi et al., Am J Cardiol 2004;93:474-477, Taeger et al., Mat-wiss u Werkstofftech 2003;34:1094-1100) were also reported that no significant improvement was observed in the performance of DLC-coated stainless stent or DLC-coated femoral head. This controversy should be discussed based on the detailed information of the coating such as atomic bond structure, composition, and/or electronic structure. In addition, instability of the DLC coating caused by its high level of residual stress and poor adhesion in aqueous environment should be carefully considered. Further in vitro and in vivo studies are thus required to confirm its use for medical devices.
منابع مشابه
Biomedical applications of diamond-like carbon (DLC) coatings: A review
To resist wear, biomedical components require coatings that are exceptionally hard, have low friction, and are bioinert. Diamond-like carbon has been shown to provide this capability and to prevent leaching of metallic ions into the body. There are many ways to deposit such coatings from carbonaceous precursors, and some offer the means to incorporate other elements such as nitrogen, titanium, ...
متن کاملLoad-Bearing Biomedical Applications of Diamond-Like Carbon Coatings - Current Status
The current status of diamond-like carbon (DLC) coatings for biomedical applications is reviewed with emphasis on load-bearing coatings. Although diamond-like carbon coating materials have been studied for decades, no indisputably successful commercial biomedical applications for high load situations exist today. High internal stress, leading to insufficient adhesion of thick coatings, is the e...
متن کاملDiamond-Like-Carbon Coatings for Advanced Biomedical Applications
Diamond-like carbon (DLC) is considered as a versatile coating material that finds a variety of mechanical and biomedical applications, including endoprosthesis and dental implants [1]. It provides mechanical robustness and cell-compatibility at the same time. Therefore, DLC has been extensively researched for achieving high hardness, low friction, high wear resistance to make it more sustainab...
متن کاملDiamond-Like Carbon Coatings for Tribology: Production Techniques, Characterization Methods and Applications
There are numerous types of surface coatings available to engineers in order to improve the friction and wear resistance of components. In order to successfully use these coatings in practice, it is important to understand the different types of coatings available, and the factors that control their mechanical and tribological properties. This paper will focus on the application of diamond-like...
متن کاملStudies of Diamond-like Carbon and Diamond-like Carbon Polymer Hybrid Coatings Deposited with Filtered Pulsed Arc Discharge Method for Biomedical Applications
Hydrogen free diamond-like carbon (DLC) coatings have been the subject of investigation all around the world for the last 30 years. DLC, due to its unique properties such as: chemical inertness, high mechanical hardness, high electrical resistivity combined with a characteristics of a wide band semiconductor, is a very promising material for biomedical, mechanical and electrical applications. O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part B, Applied biomaterials
دوره 83 1 شماره
صفحات -
تاریخ انتشار 2007